CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study.

نویسندگان

  • Kresimir Anic
  • Andrey V Bukhtiyarov
  • Hao Li
  • Christoph Rameshan
  • Günther Rupprechter
چکیده

Clean and stable surface modifications of an iridium (100) single crystal, i.e., the (1 × 1) phase, the (5 × 1) reconstruction, and the oxygen-terminated (2 × 1)-O surface, were prepared and characterized by low energy electron diffraction (LEED), temperature-programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS) and polarization modulation IRAS (PM-IRAS). The adsorption of CO in UHV and at elevated (mbar) pressure/temperature was followed both ex situ and in situ on all three surface modifications, with a focus on mbar pressures of CO. The Ir(1 × 1) surface exhibited c(4 × 2)/c(2 × 2) and c(6 × 2) CO structures under low pressure conditions, and remained stable up to 100 mbar and 700 K. For the (2 × 1)-O reconstruction CO adsorption induced a structural change from (2 × 1)-O to (1 × 1), as confirmed by LEED, TPD, and IR. For Ir (2 × 1)-O TPD indicated that CO reacted with surface oxygen forming CO2. The (5 × 1) reconstruction featured a reversible and dynamic behavior upon CO adsorption, with a local lifting of the reconstruction to (1 × 1). After CO desorption, the (5 × 1) structure was restored. All three reconstructions exhibited CO adsorption with on-top geometry, as evidenced by IR. With increasing CO exposure the resonances shifted to higher wavenumber, due to adsorbate-adsorbate and adsorbate-substrate interactions. The largest wavenumber shift (from 2057 to 2100 cm-1) was observed for Ir(5 × 1) upon CO dosing from 1 L to 100 mbar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NO dimer and dinitrosyl formation on Pd(111): from ultra-high-vacuum to elevated pressure conditions.

Using in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and conventional IRAS techniques, the adsorption of NO on Pd(111) was studied from ultra-high-vacuum (UHV) conditions to 400 mbar. New monomeric and non-monomeric high-coverage NO adsorption states were observed at 400 mbar. Initial NO adsorption at 600 K and subsequent cooling in the presence of 400 mba...

متن کامل

CO adsorption on Pd( 111): the effects of temperature and pressure

Infrared reflection-absorption spectroscopy (IRAS) has been used to study the adsorption of carbon monoxide on a Pd(ll1) surface. IRAS spectra were collected at temperatures from 100 to 1000 K and at pressures from 1.0 x lo-’ to 10.0 Torr. The IRAS data at temperatures > 250 K showed the coverage versus temperature behavior anticipated from the data acquired under UHV conditions. However, at te...

متن کامل

Impact of surface heterogeneity on mercury uptake by carbonaceous sorbents under UHV and atmospheric pressure.

Chemical and morphological heterogeneities of carbon sorbents play important roles in gas-phase adsorption. However, the specific chemical complexes and topological structures of carbon that favor or impede elemental mercury uptake are not well understood and are the subject of this study. Temperature programmed desorption (TPD) with a model carbonaceous material (highly oriented pyrolytic grap...

متن کامل

Stability and chemisorption properties of ultrathin TiO(x)/Pt(111) films and Au/TiO(x)/Pt(111) model catalysts in reactive atmospheres.

The stability of three ultrathin TiO(x)/Pt(111) films with different stoichiometry and defectivity and the corresponding Au/TiO(x)/Pt(111) model catalysts in CO or a CO-O(2) (1 : 1) gas mixture up to a pressure of 100 mbar has been investigated. According to previous studies, the ultrathin films proved to be effective substrates to deposit in UHV Au nanoparticles with specific morphologies and ...

متن کامل

Surface Spectroscopy on UHV-Grown and Technological Ni–ZrO2 Reforming Catalysts: From UHV to Operando Conditions

Ni nanoparticles supported on ZrO2 are a prototypical system for reforming catalysis converting methane to synthesis gas. Herein, we examine this catalyst on a fundamental level using a 2-fold approach employing industrial-grade catalysts as well as surface science based model catalysts. In both cases we examine the atomic (HRTEM/XRD/LEED) and electronic (XPS) structure, as well as the adsorpti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. C, Nanomaterials and interfaces

دوره 120 20  شماره 

صفحات  -

تاریخ انتشار 2016